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Probabilistic forecasting
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® Probabilistic forecasts quantify the uncertainty of the predictions.

® Aims: Calibration and sharpness.
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Response y

Non-homogeneous or distributional regression
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® Responsey is assumed to follow a predefined

parametric distribution, e.g., normal distribution.

® The two distribution parameters location and
scale are expressed by a linear function of

covariates xi ... X"

y ~N(u,0)
pw=7>00~+pB1 X1+ ...+ Bk Xk
|Og(0’) =7 +’71 'X(k+1)+-‘-+7/'x(k+l)
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scale are expressed by the ensemble mean m
and ensemble standard deviation s of the
corresponding NWP of the response:

y ~N(p,0)

p=p0o+pf1-m
log(o) =70 +71 s

2/9



Response y

Non-homogeneous or distributional regression

® Responsey is assumed to follow a predefined

® The two distribution parameters location and
scale are expressed by the ensemble mean m
and ensemble standard deviation s of the
e o ve e corresponding NWP of the response:

Ensemble mean
y ~N(u,0)

p=p0o+pf1-m
log(o) =70 +71 s

= How to account for seasonally varying regression coefficients?

parametric distribution, e.g., normal distribution.
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Time adaptive training schemes

To adjust for seasonally varying error characteristics between covariates
(ensemble forecasts) and response:
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Time adaptive training schemes

To adjust for seasonally varying error characteristics between covariates
(ensemble forecasts) and response:

¢ Sliding-window uses previous n days for model training.
® Regularized sliding-window adds regularization in model estimation.

¢ Sliding-window plus uses 2n days centered around the same calendar day
over all previous years for model training.

® Smooth model uses all available days for model training by allowing
coefficients to smoothly evolve over the year.
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Time adaptive training schemes

Sliding—window
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Surface temperature forecasting

Location parameter
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Surface temperature forecasting
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Surface temperature forecasting

Scale parameter
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Surface temperature forecasting

Scale parameter
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Surface temperature forecasting

Validation setup

Response:
® 2m temperature forecasts at five weather stations located in the plain of
northern Germany.
Covariates:

® Ensemble mean m and the ensemble standard deviation s of bilinearly
interpolated 2 m temperature forecasts issued by the ECMWF.

® Considered forecast steps from +12 to +72 h, at a 12-hourly temporal
resolution (00:00 UTC run).
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Surface temperature forecasting

Validation setup
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Surface temperature forecasting

Validation results

Data set C
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Summary

® “Remembering the past” from multiple years of training data stabilizes
and improves the calibration.
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Summary

® “Remembering the past” from multiple years of training data stabilizes
and improves the calibration.

® |n case of certain ensemble model changes, using multiple years of training
data is still superior to the classical sliding-window approach.

® Reducing the variance of the regression estimates appears to be more
important than adjusting rapidly for changing forecast biases.
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