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Motivation
Distributional:

• Specify the complete probability distribution (location, scale, shape, . . . ).

Tree:

• Automatic detection of steps and abrupt changes.

• Capture non-linear and non-additive effects and interactions.

Forest:

• Smoother effects.

• Stabilization and regularization of the model.
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Learning distributional trees and forests
Tree:

1 Fit global distributional model D(Y; θ):
Estimate model parameters θ̂.

2 Evaluate goodness of fit
(for each parameter and each observation).

3 Choose covariate X with strongest influence on
goodness of fit of D(Y; θ̂) as split variable.

4 Find the split point p which leads to the highest
improvement.

5 Repeat steps 1–4 recursively in the subgroups until
some stopping criterion is met.

Forest: Ensemble of T trees.

• Bootstrap or subsamples.

• Random input variable sampling.

YD(Y; θ̂)

? ?Y1 Y2

X ≤ p X > p

D(Y1; θ̂1) D(Y2; θ̂2)

X ≤ p X > p
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Application
Goal: Probabilistic precipitation forecasting.

Observation data:

• Daily 24h precipitation sums from July over 28 years (1985–2012).

• Observation station “Axams” in Tyrol, Austria.

Covariates:

• Numeric ensemble weather predictions of precipitation, temperature, air
pressure, convective available potential energy, . . .

• 80 covariates based on ensemble min/max/mean/standard deviation.

Distribution assumption: Power-transformed Gaussian, censored at 0.

(precipitation)
1

1.6 ∼ cN (µ, σ2)

cb 5 / 20



Application
Goal: Probabilistic precipitation forecasting.

Observation data:

• Daily 24h precipitation sums from July over 28 years (1985–2012).

• Observation station “Axams” in Tyrol, Austria.

Covariates:

• Numeric ensemble weather predictions of precipitation, temperature, air
pressure, convective available potential energy, . . .

• 80 covariates based on ensemble min/max/mean/standard deviation.

Distribution assumption: Power-transformed Gaussian, censored at 0.

(precipitation)
1

1.6 ∼ cN (µ, σ2)

cb 5 / 20



Application
Goal: Probabilistic precipitation forecasting.

Observation data:

• Daily 24h precipitation sums from July over 28 years (1985–2012).

• Observation station “Axams” in Tyrol, Austria.

Covariates:

• Numeric ensemble weather predictions of precipitation, temperature, air
pressure, convective available potential energy, . . .

• 80 covariates based on ensemble min/max/mean/standard deviation.

Distribution assumption: Power-transformed Gaussian, censored at 0.

(precipitation)
1

1.6 ∼ cN (µ, σ2)

cb 5 / 20



Application
Goal: Probabilistic precipitation forecasting.

Observation data:

• Daily 24h precipitation sums from July over 28 years (1985–2012).

• Observation station “Axams” in Tyrol, Austria.

Covariates:

• Numeric ensemble weather predictions of precipitation, temperature, air
pressure, convective available potential energy, . . .

• 80 covariates based on ensemble min/max/mean/standard deviation.

Distribution assumption: Power-transformed Gaussian, censored at 0.

(precipitation)
1

1.6 ∼ cN (µ, σ2)

cb 5 / 20



Application
Predictive performance: Distributional forests improve CRPS skill score
compared to heteroscedastic linear model (EMOS) and competing GAMLSS.

Distributional forest Prespecified GAMLSS Boosted GAMLSS
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Graphical assessment
However: Is the distributional fit calibrated?

Graphical assessments: Various possibilities suggested in different parts of
the literature.

• (Randomized) quantile-quantile residuals plot.

• Probability integral transform (PIT) histogram.

• Rootogram.

• Reliability diagram at prespecified thresholds.

• Worm plot.

In R: Different bits in various packages but no unifying and flexible
infrastructure.

Now: topmodels (on R-Forge).

cb 7 / 20
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Graphical assessment
Packages and data:
R> install.packages("disttree", repos = "https://R-Forge.R-project.org")
R> install.packages("topmodels", repos = "https://R-Forge.R-project.org")

R> library("disttree")
R> library("topmodels")

R> data("RainAxams", package = "disttree")

Random forest:
R> forest <- distforest(robs ~ .,
+ family = dist_list_cens_normal,
+ data = RainAxams, ...)
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Graphical assessment
Q-Q residuals plot: qqrplot(forest)
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Graphical assessment
PIT histogram: pithist(forest)
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Graphical assessment
Rootogram: rootogram(forest)
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Graphical assessment
Reliability diagram: reliagram(forest)
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Graphical assessment
Worm plot: wormplot(forest)
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Graphical assessment
In contrast: Linear Gaussian model.

• Homoscedastic.

• Not accounting for excess zeros.

• Incorrect assumption of underlying response distribution.

R> linear <- lm(robs ~ tppow_mean, data = RainAxams)
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Graphical assessment
Model comparison: Rootogram

R> rootogram(linear, plot = FALSE) |>
+ autoplot(legend = TRUE)
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R> rootogram(linear, plot = FALSE, breaks = -9:14) |>
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Graphical assessment
Model comparison: Rootogram

R> c(rootogram(forest, breaks = -9:14), rootogram(linear, breaks = -9:14)) |>
+ autoplot(legend = TRUE)
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Graphical assessment
Model comparison: PIT histogram

R> pithist(forest, plot = FALSE) |>
+ autoplot(legend = TRUE)
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Graphical assessment
Model comparison: PIT histogram

R> pithist(forest, plot = FALSE) |>
+ autoplot(legend = TRUE, style = "lines")
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Graphical assessment
Model comparison: PIT histogram

R> c(pithist(forest, plot = FALSE), pithist(linear, plot = FALSE)) |>
+ autoplot(legend = TRUE, style = "lines", single_graph = TRUE, col = 1:2)
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Graphical assessment
Model comparison: Q-Q residuals plot

R> qqrplot(forest, plot = FALSE) |>
+ autoplot(legend = TRUE)
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Graphical assessment
Model comparison: Q-Q residuals plot

R> c(qqrplot(forest, plot = FALSE), qqrplot(linear, plot = FALSE)) |>
+ autoplot(legend = TRUE, single_graph = TRUE, col = 1:2)
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Software
disttree: available on R-Forge at

https://R-Forge.R-project.org/projects/partykit/pkg/disttree/

Concept: Fusion of tree-based models with distributional modeling.

Main functions:

distfit Distributional fits (ML, gamlss.family/custom list).

No covariates.

disttree Distributional trees (ctree/mob + distfit).

Covariates as partitioning variables.

distforest Distributional forests (ensemble of disttrees).

Covariates as partitioning variables.
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Software
topmodels: available on R-Forge at

https://topmodels.R-Forge.R-project.org/

Concept: Unifying toolbox for probabilistic forecasts and graphical model assessment.

Main functions:

procast Probabilistic forecasts ((g)lm, crch, disttree, more to come).

Computation of probabilities, densities, scores, and Hessians.

rootogram, pithist, . . . Plotting rootograms, PIT histograms, . . .

plot, autoplot Generic plot, autoplot function.
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